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Abstract. Core-polarisation and meson-exchange current calculations have been performed at 88Sr and
90Zr closed-shell cores to determine the effective magnetic dipole operator for valence orbitals. The values
obtained show considerable core- and orbit-dependency. The results are tested in shell-model calculations
for magnetic moments in N=50 and N=51 nuclides and the comparison with experiment is satisfactory.

PACS. 21.10.Ky Electromagnetic moments – 21.60.Cs Shell model – 27.60.+j 90 ≤ A ≤ 149

1 Introduction

It is common practice in nuclear shell-model calculations
to use effective operators when calculating electromag-
netic moments and transition rates. Configurations lying
outside the model space cause a renormalisation of the
relevant operators, and this is taken into account by in-
troducing parameters, which are either calculated or fitted
to experimental data. Examples are the effective charges
used for the electric quadrupole operator and effective g-
factors used for the magnetic dipole operator.

In a recent paper[1] we calculated quadrupole effective
charges for the region of mass A=90, and found significant
differences between the values for 88Sr and 90Zr closed-
shell cores. In the current paper we calculate g-factors for
the same mass region and again find appreciable core de-
pendency. The details of the calculated effective g-factors
are given in Sect. 2. Two-body core-polarisation correc-
tions are discussed in Sect. 3, and in Sect. 4 are used
together with the calculated g-factors in shell-model cal-
culations of N=50 and N=51 nuclei. In addition, a least-
squared fit is carried out to determine best-fit values of
the single-particle moments, to be compared with the cal-
culated moments.

2 Calculation of effective g-factors

The magnetic moment operator in finite nuclei is modified
from the free-nucleon operator due to core-polarisation
and meson-exchange current (MEC) corrections[2,3]. The
effective operator is defined as

µeff = gl,eff l + gs,effs + gp,eff [Y2, s], (1)

where gx,eff = gx + δgx, (x = l, s or p), with gx the free-
nucleon g-factor and δgx the correction to it. The term

[Y2, s], which is absent from the free-nucleon operator, is
a spherical tensor of multipolarity one formed by coupling
a spherical harmonic of rank two to the spin operator.
The free-nucleon values for gl and gs are 0 and −3.826 for
neutrons, 1 and 5.587 for protons.

We here calculate in perturbation theory the correc-
tions δgx for closed-shell plus or minus one configurations
relative to the closed shell 88Sr (in which the proton p1/2

orbital is empty) and 90Zr (in which this orbital is filled).
The three g-factors, δgl, δgs and δgp, are determined by
evaluating each of the one-body diagrams three times: (a)
linking j = l + 1/2 with j = l + 1/2, (b) j = l + 1/2 with
j = l − 1/2, and (c) j = l − 1/2 with j = l − 1/2. All the
one-body graphs required for the evaluation of the core-
polarisation correction are given in Figs. 1 - 4. In Fig. 1,
diagram (a) is the zeroth-order term; it represents the free-
nucleon operator evaluated between single-particle oscil-
lator states. Diagrams (b) and (c) are the only first-order
terms; they are the graphs originally evaluated by Arima
and Horie[4], who showed they lead to a strong quenching
of the spin g-factor, gs. These graphs select out just the

Fig. 1. Zeroth-order and first-order core-polarisation graphs.
Diagram (c) is the Hermitian adjoint of diagram (b)
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Table 1. Calculated effective g-factors and magnetic-moment corrections (in nuclear magnetons) for the 0g orbital in closed-
shell-plus (or minus)-one configurations, broken down by class of diagram

Proton Neutron

δgl δgs δgp δµ(g9/2) δgl δgs δgp δµ(g9/2)

88Sr core: πp1/2-orbit empty

CP-RPA: 0.011 −0.821 0.928 −0.299 −0.005 0.995 1.115 0.560
CP-RPA-vertex: 0.011 −0.457 0.334 −0.159 −0.005 0.481 −1.051 0.144
CP-NCS(≤ 6h̄ω): −0.136 −0.623 1.186 −0.768 0.133 0.188 0.864 0.687
CP-NCS(≥ 8h̄ω): −0.047 −0.324 −0.008 −0.349 0.044 0.209 0.023 0.282
MEC: 0.145 0.411 −0.536 0.745 −0.108 −0.193 0.292 −0.507
Isobars: −0.003 −0.360 0.754 −0.137 0.002 0.360 −0.796 0.132
Relativistic: −0.027 −0.167 −0.045 −0.193 0.000 0.102 0.000 0.051
CP-MEC: 0.110 0.262 0.575 0.613 −0.106 −0.241 −0.597 −0.587

Sum: 0.065 −2.078 3.187 −0.548 −0.045 1.901 −0.150 0.761
90Zr core: πp1/2-orbit full

CP-RPA: 0.011 −0.347 −0.071 −0.133 0.001 0.761 0.232 0.399
CP-RPA-vertex: 0.009 −0.209 0.135 −0.057 −0.004 0.336 −0.175 0.140
CP-NCS(≤ 6h̄ω): −0.138 −0.639 1.196 −0.787 0.150 0.233 1.446 0.822
CP-NCS(≥ 8h̄ω): −0.047 −0.324 −0.008 −0.349 0.044 0.209 0.023 0.282
MEC: 0.145 0.410 −0.525 0.747 −0.114 −0.195 0.259 −0.535
Isobars: −0.003 −0.367 0.793 −0.137 0.002 0.367 −0.802 0.134
Relativistic: −0.027 −0.167 −0.045 −0.193 0.000 0.102 0.000 0.051
CP-MEC: 0.110 0.262 0.575 0.613 −0.106 −0.241 −0.597 −0.587

Sum: 0.061 −1.379 2.051 −0.297 −0.027 1.572 0.386 0.706

Fig. 2. Second-order graphs contributing to the RPA series.
Hermitian adjoint graphs are not shown

1+ particle-hole components in the residual interaction;
for a 90Zr closed-shell core there is only one such compo-
nent, namely neutron (g−1

9/2, g7/2). For a 88Sr closed shell
there is a second 1+ particle-hole state involving p-orbits,
namely proton (p−1

3/2, p1/2).

In Fig. 2 some second-order graphs involving 1+

particle-hole intermediate states are shown. These graphs
represent a start of a geometrical series, which we sum
to all orders. This is equivalent to a Random Phase Ap-
proximation (RPA) calculation. The second-order graphs
are out of phase with the first-order graphs, so the se-
ries alternates in sign. The results of the summation is
given in Table 1, where it is labelled CP-RPA. We show
the results for a proton and a neutron in a 0g orbit for
the cases of 88Sr and 90Zr closed-shell cores. The residual
interaction in these calculations is taken as a one-boson-
exchange potential multiplied by a short-range correlation
function. This modification is an approximate, but easy,
way to obtain a G-matrix. The potential is of the Bonn
type[6], with the values of the meson masses and cou-

Fig. 3. Second-order graphs representing vertex corrections to
the RPA series. Hermitian adjoint graphs are not shown

pling constants given in[2]. It is important to use here a
one-boson-exchange potential as the residual interaction
so that the meson-exchange current operators, to be dis-
cussed shortly, can be constructed consistently with the
same meson masses and coupling constants.

Note the RPA correction mainly quenches the gs value.
For protons there is a big reduction in the quenching in
moving from a 88Sr to a 90Zr core due to the removal of the
proton (p−1

3/2, p1/2) particle-hole state from the calculation.
There is also a reduction for neutrons, but not quite so
large. From Fig. 2 one can see that the valence particle
is not antisymmetrised with respect to the particle line
in the second bubble. This is corrected by the series of
diagrams shown in Fig. 3, which are known as the RPA
vertex-correction graphs. Their contribution is in phase
with the RPA calculation increasing the quenching of gs.
This contribution is labelled in Table 1 as CP-RPA-vertex.

In Fig. 4 are a number of diagrams in which the one-
body operator acts on a particle or hole line as opposed
to operating on a particle-hole pair. This set of diagrams
is called a ‘number-conserving’ set (NCS). That is, if the
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Fig. 4. Second-order graphs representing the number-
conserving sets. Lines with a ‘loop’ on them are folded lines
[5] and represent normalisation-correction graphs. Hermitian
adjoint graphs are not shown

magnetic moment operator is replaced by the number op-
erator, the sum of these graphs would be identically zero.
These graphs are difficult to compute because there are no
selection rules to limit the number of intermediate states
to be summed. We were able to sum these graphs up to
intermediate-state energies of 6h̄ω above the energy of the
valence nucleon in an oscillator basis. However it was ev-
ident that the calculation had not converged at this en-
ergy. We therefore proceeded with an approximate cal-
culation. The closed shell is taken to be an LS closed
shell, with A=80, and the computation performed in LS
coupling. This leads to a great saving in computation
time and makes the calculation tractable. However, the
neutron-excess orbitals are not now treated correctly. The
intermediate-state summation is explicitly computed up
to 14h̄ω and geometrically extrapolated beyond that. We
checked that an LS-coupling calculation for intermediate-
state energies of 6h̄ω was in reasonable accord with the
correct jj-coupling calculation for the same intermediate
states. The results are shown separately for low- and high-
energy intermediate states in Table 1, where they are la-
belled CP-NCS. It is seen these graphs are responsible
for a large correction to the magnetic moments. For the
spin part of the operator they are in phase with the RPA
and provide more quenching to gs. Additionally they give
significant contributions to gl, positive for neutrons and
negative for protons.

Figs. 1 - 4 display all the core-polarisation graphs that
contribute up to second order to the renormalisation of
the magnetic moment operator. However we need to com-
ment on the appropriate energy denominators to be used
for the intermediate states in the perturbation expansion.
Formally, these energies are given in terms of the eigenen-
ergies of the single-particle states of the one-body Hamil-
tonian, the harmonic oscillator, and so are integral mul-
tiples of h̄ω. For the high-lying intermediate states, this
is what we have used. However, as the closed-shell cores
we are using for these calculations, 88Sr and 90Zr, are jj-
closed shells rather than LS-closed shells, we cannot use
simple integral multiples of h̄ω for the single-particle en-
ergies of the low-lying states. This is because some of the

Table 2. Single-particle energies for neutrons and protons near
the Fermi surface from pick-up and stripping reaction data. All
other single-particle energies are given by Nh̄ω plus a spin-
orbit shift from Eq. (2) and normalised to the 1d5/2 value for
neutrons and to the 1p1/2 value for protons

Neutron Proton

1p3/2 −15.14 −10.61
0f5/2 −14.98 −11.03
1p1/2 −11.50 −7.12
0g9/2 −11.11 −6.25
1d5/2 −6.36 −2.38
2s1/2 −5.33 −0.47
1d3/2 −4.35 −0.39
0g7/2 −3.69 −0.69

unoccupied particle orbitals are degenerate with some of
the occupied hole orbitals and that could result in cer-
tain energy denominators in the perturbation expansion
becoming zero. Of course, it is the spin-orbit force that
splits this degeneracy and in medium-mass nuclei the con-
tribution of the spin-orbit force to level spacing is very im-
portant. Therefore, following Bohr and Mottelson[7], we
add to the one-body oscillator the terms

vlsh̄ω(l.s) + vllh̄ω
(
l2 − 〈l2〉N

)
, (2)

〈l2〉N =
1
2
N(N + 3), (3)

where N = 2n+ l is the principal quantum number for the
oscillator orbital, n the number of radial nodes (excluding
the origin and infinity) and l the orbital angular momen-
tum quantum number. There is no radial dependence to
these terms, so the eigenfunctions remain oscillator func-
tions, but the degeneracy among the single-particle en-
ergies is removed. We use the values vls = −0.127 and
vll = −0.03 from[7]. We make a further fine adjustment
to these energies for the single-particle states close to the
Fermi surface so that they match exactly experimental
values determined in pickup and stripping reactions. The
values of the single-particle energies used are given in Ta-
ble 2.

The other major ingredient to the renormalisation
of the magnetic moment operator comes from meson-
exchange currents (MEC). These MEC corrections arise
because nucleons in nuclei are interacting through the ex-
change of mesons, which can be disturbed by the elec-
tromagnetic field. Since meson exchange involves two nu-
cleons, the correction leads to two-body magnetic mo-
ment operators. In a closed-shell-plus-or-minus-one con-
figuration, computation of this correction requires evalu-
ation of the two-body matrix elements between the va-
lence nucleon and one of the core nucleons, summed over
all nucleons in the core. The results can be expressed in
terms of an equivalent effective one-body operator, Eq.
(1), acting on the valence nucleon alone. The details of
the two-body MEC operators are described in[2] and up-
dated in[8]. For consistency, the same mesons, coupling
constants, masses and short-range correlations are used
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in the construction of the MEC operators as are used in
the one-boson-exchange potential. From Table 1, it is seen
that the MEC correction is opposite sign to the CP-NCS
correction and cancels a large part of it.

There are two further terms to consider. First is a
mesonic correction in which the meson prompts the nu-
cleon to be raised to an excited state, the ∆-isobar res-
onance, which is then de-excited by the electromagnetic
field. This correction leads to a two-body operator that is
handled like the MEC correction. Second is a relativistic
correction to the one-body operator,[2]. Both these correc-
tions amount to only a few percent change to the magnetic
moment, but are retained for completeness.

Finally a further correction of the same order in meson-
nucleon couplings is a core-polarisation correction to the
two-body MEC operator. This term also suffers from an
unrestricted summation over intermediate states, so we
have only computed it approximately using LS coupling.
Fortunately, as Arima et al.[9,10] have pointed out, the
latter terms largely cancel the former. This correction is
listed in Table 1 as CP-MEC and again it is seen to be of
opposite sign to the CP-NCS correction and, together with
the MEC correction, overpowers it. It is clear with so much
cancellation involved the final results will be somewhat
sensitive to the assumptions and approximations made
here.

In Table 3 we gather together all these contributions
to the renormalisation and give the summed result for
all the orbitals involved in the shell-model calculations
that follow. All matrix elements have been evaluated with
harmonic oscillator radial functions of characteristic fre-
quency h̄ω = 9.08 MeV. Note that with a term [Y2, s], in
the effective magnetic moment operator, Eq. (1), there are
non-zero off-diagonal matrix elements between 0g7/2-1d5/2

and 1d3/2-2s1/2 orbitals. These l-forbidden matrix ele-
ments are zero with the free-nucleon operator but non-zero
here. However, their impact in the present calculation is
very small.

3 Two-body corrections

The g-factor renormalisations, as calculated in Sect. 2,
strictly apply only in closed-shells-plus-or-minus-one nu-
cleon situations. Yet in the shell-model calculations, we
will use these renormalised g-factors in closed-shell-plus-n
cases, where is n is a small number representing the pro-
ton occupancy in the g9/2 orbital. Whenever n is greater
than 1, there are additional contributions to the core po-
larisation coming from interactions among the valence nu-
cleons. Evaluating these contributions to just first order in
perturbation theory leads to two-body diagrams. The ap-
propriate first-order diagrams for N=50 and N=51 nuclei
are given in Fig. 5. Diagrams (a) to (d) involve excitation
of a g9/2 proton into the g7/2 shell, caused by interaction
with either a proton or a neutron. Diagrams (e) and (f),
which are of lesser importance due to the small g7/2 com-
ponents in N=51 wavefunctions, involve excitation of a
g9/2 neutron into the g7/2 shell.

Fig. 5. First-order two-body core-polarisation graphs. The up-
per two diagrams involving only protons in the g9/2 orbital are
the only ones operative for N=50 nuclides. The lower four dia-
grams involving a proton-neutron interaction are additionally
operative for N=51 nuclides. The neutron orbital, j1 or j2,
may be either the d5/2, s1/2, d3/2 or g7/2 orbitals

We have evaluated these diagrams with the one-boson
exchange potential used for the core-polarisation calcula-
tions in Sect. 2 and with the proton and neutron single-
particle energy gaps between the g7/2 and g9/2 orbitals
set at 5.56 and 7.42 MeV respectively from Table 2. The
g9/2 → g7/2 reduced matrix element required in the evalu-
ation of the two-body diagrams was set equal to the value
given by the g-factors of Table 3; doing this, rather than
using free-nucleon g-factors, should effectively take into
account higher-order diagrams. The result is a set of two-
body matrix elements, which can be used in calculations
of magnetic moments.

4 Shell-model calculations

The g-factors in Table 3 and two-body matrix elements
from Sect. 3 were used in calculations of magnetic mo-
ments of N=50 and N=51 nuclei. Even-parity N=50 mo-
ments were calculated allowing Z−38 protons to occupy
the p1/2 and g9/2 orbitals, making use of the JS1 inter-
action of Johnstone and Skouras[11]. Even-parity N=51
moments were calculated allowing the 51st neutron to oc-
cupy the d5/2, s1/2, d3/2 and g7/2 orbitals, with protons
again spanning the p1/2 and g9/2 shells. The interaction
used was the JS4 interaction of Johnstone and Skouras[11].
The wavefunctions have components with the proton p1/2

orbital filled and with the proton p1/2 orbital empty, and
for these different g-factors were used – namely, the val-
ues for 90Zr and 88Sr cores given in Table 3. Results of the
calculations are given in Table 4.

Least chi-squared fits were carried out to determine
best-fit values of effective g9/2 and d5/2 magnetic mo-
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Table 3. Effective g-factors and magnetic moment corrections (in nuclear magnetons) from core-polarisation and MEC calcu-
lations. Here µsp is the free-nucleon, single-particle value of the magnetic moment and µeff = µsp + δµ

j = l + 1/2 j = l − 1/2

Orbital δgl δgs δgp δµ µeff
µeff
µsp

δµ µeff
µeff
µsp

88Sr core: πp1/2-orbit empty

π 1p −0.162 −2.506 1.315 −1.363 2.431 64% 0.135 −0.130 49%
π 0g 0.065 −2.078 3.187 −0.548 6.246 92% 0.708 2.424 141%
ν 0g −0.045 1.901 −0.150 0.761 −1.152 60% −0.896 0.592 40%
ν 1d −0.060 2.084 −1.469 0.838 −1.075 56% −0.557 0.590 51%
ν 2s 2.120 1.060 −0.853 45%

ν 0g-1d −1.660
ν 1d-2s −1.390

90Zr core: πp1/2-orbit full

π 1p 0.086 −1.531 1.164 −0.633 3.160 83% 0.158 −0.107 40%
π 0g 0.061 −1.379 2.051 −0.297 6.496 96% 0.546 2.262 132%
ν 0g −0.027 1.572 0.386 0.706 −1.207 63% −0.759 0.729 49%
ν 1d −0.054 1.666 −1.404 0.644 −1.269 66% −0.429 0.719 63%
ν 2s 1.636 0.818 −1.095 57%

ν 0g-1d −2.942
ν 1d-2s −1.924

Table 4. Magnetic moments (in nuclear magneton units) for
nuclei with N=50 and N=51 calculated in the shell model
(a) with the free-nucleon g-factors (Bare), (b) with the calcu-
lated effective g-factors from Table 3 plus the two-body core-
polarisation diagrams (Calc), (c) with the chi-squared fits for
the effective g-factors (Fit), compared with experimental val-
ues [12]

Bare Calc Fit Expt

90Zr(8+) 12.08 11.04 10.81 10.85± 0.06
91Nb(21/2+) 15.85 14.38 14.06 12.4± 1.9
92Mo(8+) 12.08 11.32 11.24 11.31± 0.04
93Tc(9/2+) 6.79 6.29 6.23 6.30± 0.05a
94Ru(6+) 9.06 8.32 8.27 8.12± 0.04
94Ru(8+) 12.08 11.11 11.03 11.10± 0.04
96Pd(8+) 12.08 10.90 10.84 10.97± 0.06

91Zr(5/2+) −1.84 −1.11 −1.35 −1.304± 0.000
91Zr(21/2+) 10.17 9.98 9.87 9.82± 0.08
92Nb(2+) 6.65 5.93 6.09 6.137± 0.004
93Mo(21/2+) 10.19 10.15 9.67 9.93± 0.08
94Tc(7+) 5.11 5.36 4.97 5.07± 0.07
95Ru(5/2+) −1.51 −0.74 −1.06 −0.861± 0.007b
95Ru(17/2+) 7.53 7.52 7.07 7.01± 0.14c
95Ru(21/2+) 10.32 10.12 9.64 9.17± 0.07

a Ref.[13], averaged with previous data [12]
b Ref.[14]
c Ref.[15]

ments. Chi squared is defined as

χ2 =
∑
i

(µi(calc)− µi)2
/(Nσ2

i ), (4)

where the ith experimental magnetic moment is µi, the
corresponding uncertainty is σi, and N is the number

of moments included in the fit. In order that the fit is
not overly weighted by data with very small experimen-
tal uncertainties, we set the minimum uncertainty equal
to the value required to give χ equal to unity. This, in
effect, gives each experimental datum (with the exception
of 91Nb(21/2+)) an equal weight in the fit. Our estimate
of the error in the effective moment, µeff , is then given by

σ2
µ =

∑
i

(∂µeff/∂µi)
2 (µi(calc)− µi)2. (5)

The fit was made to fifteen N=50 and N=51 even-
parity moments, with the calculated two-body corrections
and the small neutron contribution from other than diago-
nal d5/2 matrix elements subtracted from the experimental
values. This latter contribution was calculated using the
g-factors of Table 3. The result was to give effective proton
g9/2 magnetic moments of µeff(g9/2) = 6.47± 0.04µN and
6.11 ± 0.03µN , and effective neutron d5/2 magnetic mo-
ments of µeff(d5/2) = −1.78±0.13µN and −0.94±0.08µN ,
when the proton p1/2 orbital is filled and empty respec-
tively. These are 95±0.7%, 90±0.5%, 93±7% and 49±4%
of the free-nucleon values, whereas the calculations of Sect.
2 gave 96%, 92%, 66% and 55%. Agreement is good for
three of the four cases. However for a d5/2 neutron outside
a 90Zr core, the calculations are giving a larger renormal-
isation than appears to be evident in the fits to data.

The proton p1/2 µeff value can be determined from
the magnetic moment of 89Y(1/2−), which is known to
very high precision. Assuming that this state is purely a
p1/2 particle outside the 88Sr core, the µeff is −0.137, only
52% of the single-particle value. This is in good agree-
ment with the calculated value in Table 3 for 88Sr plus
particle, which is 49%. The calculated value, on the other
hand, for a 90Zr core minus a p1/2 proton is only 40%.
In principle, identical results should be obtained for both
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cores, but in practice, our calculations do not quite sat-
isfy this requirement. This is because the RPA series, as
mentioned earlier, does not respect the antisymmetry of a
particle line in the particle-hole bubble and the external
valence particle line. This is corrected to second order by
the CP-RPA-vertex graphs, but not to all orders.

5 Summary

We have calculated effective g-factors for nucleons in the
region of mass A=90, by summing first- and second-order
diagrams, including effects of meson-exchange currents. It
is found that there are significant differences between g-
factors calculated with a 88Sr closed-shell core, in which
the proton p1/2 orbital is empty, and with a 90Zr core, in
which this shell is filled. Two-body core-polarisation cor-
rections to magnetic moments have also been considered
by evaluating appropriate first-order diagrams. The cal-
culated one- and two-body operators have then been used
in calculations of magnetic moments of N=50 and N=51
nuclei, and agreement with experiment is satisfactory.

In addition, we have tried to determine empirically the
effective g-factors of the proton g9/2 and neutron d5/2 or-
bitals by performing least-square fits of shell-model calcu-
lations with four parameters to fifteen experimental data.
For three of the four effective g-factors determined in this
way there is a good correspondence with the theoreti-
cally calculated values. For the fourth case, a d5/2 neu-
tron orbital outside a 90Zr closed shell, there is a big
difference. Indeed, the empirical values of µeff(d5/2) =
−1.78 ± 0.13µN and −0.94 ± 0.08µN for cores of 90Zr
and 88Sr respectively show a very large core dependency,
much larger than the theoretical calculations indicate. Cu-
riously, in a similar study[1] of effective charges for electric
quadrupole moments the empirically determined values

for a d5/2 neutron also showed more dependency on the
cores than theory anticipated. We have no explanation for
this, but speculate that for N=51 isotones the shell-model
space should be enlarged, possibly to include the neutron
h11/2 orbital.
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